
Link Cable / Wire

Link Cable

Part Number		Wire End No. Selection				S (Stroke) 10 mm	mm Length)		Wire Diameter		Included Nut		Max. Operating Force N	Bending
Туре	No.	Le	eft	Rig	ght	Increment	Increment	Dia. (O)	(Ø)	M (Coarse)	В	Т	{kgf}	Radius Ř
	0.7					40~500	200~3000	0.75	5	M5	8	3.2	294[30]	75
CWP	1.2	M N P	03 04 05	N	03 04 05	40~500	200~3000	1.2	5	M6	10	3.6	706[72]	/5
	2.0			١.	"	40~500	300~3000	2.0	6	M8	13	5	1878[192]	100

Link Wire

Part Number		٧	Vire E Sele	nd No	о.	L 10mm Increment	Wire Dia. (Ø)	Max. Operating Force N	Deliuliy	
Туре	No.	Le	eft	Rig	ght		Dia. (O)	{kgf}	Radius R	
	0.7		03		03	40~5000	0.75	294[30]	20	
CWW	1.2	M N P	04	M N P	04	40~5000	1.2	706[72]	32	
	2.0	Ċ	05	Ľ	05	40~5000	2.0	1878[192]	52	

■ Durability & Replacement Cycle <Reference Value>

Wire	Safety Factor	Max. 60%		30%	10%					
Dia. d	Pull Count	0.1 Million Times	0.3 Million Times	0.5 Million Times	1 Million Times					
0.7		294 [30]	176 [18]	88 [9]	29 [3]					
1.2	Operating Force NIkafl	706 [72]	424 [43]	212 [22]	71 [7]					
2.0	N[kgf]	1878 [192]	1127 [115]	563 [58]	188 [19]					

* When wiring the pulley, durability degrades depending on the pulley specifications.

Wire Specifications & Elongation < Reference Value>

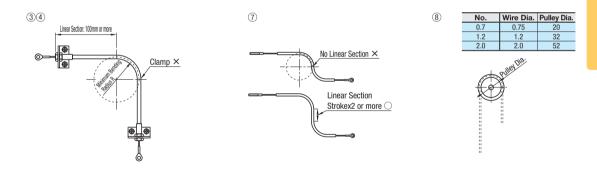
Wire	Wire		d at the max	dimum oper	ating force
Dia. d	Structure (Twisted)	Applied Load	Total Elongation	Elastic Elongation	Permanent Elongation
0.7		294N	1.17%	1.13%	0.04%
1.2	Multi- twisted (7x19)	706N	1.13%	1.09%	0.03%
2.0	(1710)	1878N	1.13%	1.08%	0.05%

Link Cable							Link Wire								
Part Number		Wire End	Unit Price				Part N	umber	Wire End		Unit	Price			
Type	No.	Left/Right Combination	L~500	~1000	~2000	~3000	Type	No.	Left/Right Combination	L~500	~1000	~3000	~5000		
		PP							PP						
	0.7	MP NP						0.7	MP NP						
		MM MN NN							MM MN NN						
		PP							PP						
CWP	1.2	MP NP					CWW	1.2	MP NP						
		MM MN NN							MM MN NN						
CWP		PP						2.0	PP						
	2.0	MP NP							MP NP						
		MM MN NN							MM MN NN						

Alteration	Bracket Included			
Spec.	Shipped with the mounting brackets and scr Bolt: SCB4-10, 2 pcs. "Applicable to CWP	Type CWP	No. 0.7 1.2 2.0	5.3 6.5 8.5
Code	BL (1 pc.)	WE	3L (2 p	ics.)

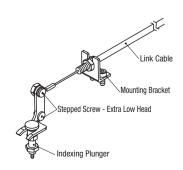
Features of Link Cable

-Generally called PULL cable - a control cable that can perform complex power transmissions to the device installed far away by transmitting the pull force and displacement, using together with various connecting parts.

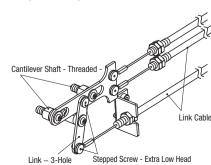

-Originally designed as the internal components of the automobiles - the power transmission component with the characteristics of "lightweight", "direct feel", "assembly", "vibration damping & sound proofing", and "safety".

- <Flexible Design/Assembly> Without requiring the joint mechanism of the intermediate area, all you need is a gap in the outer diameter to connect the drive component and the operating unit three-dimensionally.
- < Quake Resistance & Sound Proofing>Less rigid compared to the mechanical rod type and excels in sound dampening and vibration insulation.
- <Space Saving> Flexible placement of drive components and operating unit allows you to make the unit compact.
- <Reliability> Highly reliable as you can directly connect the operating unit and the drive components mechanically.

Cautions on Designing/Using Link Cables


- ①Use it within the load capacity of the maximum operating force.
- ②To avoid loosening, make sure to secure the area where the outer tube is attached. (Depending on your situation, order the alterations of the mounting bracket and use them accordingly.)
- 3When you bend the cable for wiring, keep at least 100 mm straight to avoid creating a bending angle on the threaded area of both ends of the outer tube.
 Do not clamp the bending area of the outer tube. (It could degrade the durability.)
- (4) Wire the cable to make the bending angle to be above the minimum bending radius R.
- ⑤Keep the bending minimum when you wire the cable.
- ⑥If you have to extend the wiring, secure the outer tube where appropriate to prevent the outer tube from moving broadly during operations.
- To wire the cable in S-shaped form, provide a linear part that is at least twice the stroke. Failure to do so will degrade the operating force by half.
- (8) Cautions on Using Link Wire

If you use the wire with a pulley, the outer diameter of the pulley must be longer than those shown in the below table. Durability varies depending on the operation speed or the load weight.



Remote Controlling of Indexing Plunger

1-Input / 2-Output Mechanism

